Chapter 1: Combinatorial Analysis

1.1 Introduction

A communication system is to consist of \(n \) identical antennas that are to be lined up in a linear order.

Signals are received properly as long as no two consecutive antennas are defective.

If \(m \) of the \(n \) antennas are defective, what is the probability that the resulting system will be functional?

If \(n = 4 \) and \(m = 2 \), then \(P(\text{system functional}) = \frac{3}{6} = \frac{1}{2} \).

Using counting, we can solve the problem.

If \(m = 2 \), \(n = 4 \); All possible configurations:
0110 0 means antenna is working
0101
1010
0011
1001
1100

\(P(\text{system functional}) = \frac{3}{6} = \frac{1}{2} \)

Using counting, many probability problems can be solved, just like this one.
1.1 Introduction

- The theory of counting is formally known as combinatorial analysis
- Thought/Word Problems – emphasis on logic, intuition, and creative reasoning
- Almost all problems involve abstract counting, called combinatorics
- Probability density functions, calculations need integration, summation, algebra skills.
- Often large sets of long sequences of events must be exhaustively analyzed.
- We will do most homework problems in class after you turn in.
- Quizzes based on homework problems and examples discussed in the class will be given for each week.

1.2 The Basic Principle of Counting

- Experiment 1 has m possible outcomes and Experiment 2 has n possible outcomes.
- If the above two experiments are to be performed, then together there are $m \times n$ possible outcomes of the two experiments

 $(1, 1), (1, 2), \ldots, (1, n) \\
 (2, 1), (2, 2), \ldots, (2, n) \\
 \ldots \\
 (m, 1), (m, 2), \ldots, (m, n)$

Example 2a: A small community consists of 10 women, each of whom has 3 children. If one women and one of her children are to be chosen as mother and child of the year.

How many different choices are possible? $10 \times 3 = 30$

Generalized basic principle of counting

If r experiments that to be performed, and each experiment may have n_i outcomes for $i = 1$ to r,

The total possible outcomes of these r experiments is $n_1 \times n_2 \times n_3 \ldots \times n_r$

Example 2b: A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors and 2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to be chosen. How many different subcommittees are possible?

$3 \times 4 \times 5 \times 2 = 120$ possible subcommittees

Example 2c:

How many different 7-place license plates are possible if the first 3 places are to be occupied by letters and the final 4 by numbers?

$26 \times 26 \times 26 \times 10 \times 10 \times 10 \times 10 = 175,760,000$

Example 2d:

How many functions defined on n points are possible if each functional value is either 1 or 0?

$f(i) = 1 \text{ or } 0 \text{ for } i = 1 \text{ to } n, \implies 2^n$ possible functions.
Example 2e
How many 7-place license plates would be possible if repetition among letters or numbers were prohibited?

\[26 \times 25 \times 24 \times 10 \times 9 \times 8 \times 7 = 78,624,000\] possible license plates.

1.3 Permutations

• How many different ordered arrangements of the letters a, b, and c are possible?
 – 6 namely, abc, acb, bac, bca, cab, cba
• Each ordered arrangement is known as a permutation.
• There are 6 possible permutations of a set of 3 objects.
 \[6 = 3!\]
• If there are \(n\) objects, the total of permutations is \(n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 = n!\)

Example 3a: How many different batting orders are possible for a baseball team consisting of 9 players?
There are 9! possible batting orders.

Example 3b
A class in probability theory consists of 6 men and 4 women. An examination is given and students are ranked according to their performance. Assume that no two students obtain the same score.

(a) How many different rankings are possible?
\[10!\]

(b) If the men are ranked among just themselves and the women themselves, how many different rankings are possible?
\[(6!) \times (4!) = 17,280.\]

Example 3c
10 books. Of these, 4 are math books, 3 are chemistry books, 2 are history books and 1 is a language book. same subject are together on the shelf. How many different arrangements are possible?

\[4! \times 3! \times 2! \times 1! = 6912.\]

Example 3d: How many different letter arrangements can be formed using the letters P E P P E R?

In general \(n\) objects of which \(n_1\) are alike, \(n_2\) are alike, \(n_r\) are alike, the total different permutations are:

\[\frac{n!}{n_1! n_2! \cdots n_r!}; \text{where}, n = n_1 + n_2 + \cdots + n_r\]
Example 3e:
A chess tournament has 10 competitors of which 4 are Russian, 3 are from the United States, 2 from Great Britain, and 1 from Brazil. If the tournament result lists just the nationalities of the players in the order in which they place, how many outcomes are possible?

$$\frac{10!}{4!3!2!1!} = 12,600$$

Example 3f
How many different signals, each consisting of 9 flags hung in a line, can be made from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color are identical?

There are $9! / (4!3!2!) = 1260$.

1.4 Combinations

- Determine the number of different groups of r objects that could be selected from n objects. (the order of selection is irrelevant, such as abc, acb counts as one group.)

$$C(n, r) = \frac{n!}{(n-r)! r!} = \binom{n}{r}$$

Example 4a
n = 20, r = 3, such as select 3 person to serve in a committee from 20 people. The number of possible committees $C(20, 3) = 20 \times 19 \times 18 / (3 \times 2 \times 1) = 1140$

Example 4b: For a group of 5 women and 7 men, how many committees of 2 women and 3 men can be formed?

Solution: $C(5, 2) \times C(7, 3) = 350$.

What if 2 of the men are feuding and refuse to serve on the same committee together?

Solution: calculating the two feuding men in the same committees then subtract from the total available men groups.

$C(2, 2) \times C(5, 1) = 5$ out of $C(7, 3) = 35$. 35 - 5 = 30 for men
$C(5, 2) = 10$ for women, total 30 x 10 = 300 committees.

Example 4c
Consider a set of n antennas of which m are defective and $n-m$ are functional and assume that all the defectives and all of the functionals are considered indistinguishable. How many linear orderings are there in which no two defectives are consecutive?

$n-m$ functional antennas. There are $n-m+1$ possible positions to put the defective antennas such that at least one functional antenna between any two defective ones.

$\ ^1 \ ^1 \ ^1 \ ^1 \ ^1 \ \ldots \ldots \ , \ 1; \ 1 = functional; \ ^1 = place \ for \ at \ most \ one \ defective$

There are $C(n-m+1, m)$ possible orderings

if $n= 4, m= 2, then C(3, 2) = 3$
The Binomial Theorem

\[\binom{n}{r} \] are often referred to as binomial coefficients. This is because of their prominence in the binomial theorem.

\[
(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \quad \text{This is binomial theorem}
\]

\[
\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \quad \text{A useful combinatorial identity}
\]

1.5 Multinomial Coefficient

- A set of \(n \) distinct items is to be divided into \(r \) distinct groups of respective sizes \(n_1, n_2, n_3, \ldots, n_r \), where \(n = n_1 + n_2 + n_3 + \ldots + n_r \); the number of possible divisions is \(\frac{n!}{n_1!n_2!\cdots n_r!} \).

- A police station of 10 officers, 5 patrolling the street, 2 working in the station, 3 on reserve, How many different divisions of the 10 officers into 3 groups are possible? \(\frac{10!}{5!2!3!} = 2520 \)

ECE 3610

Name: ___________________(print)

Quiz: 2006.01.19

How many different 7-place license plates are possible if the first three places are for numbers and the other 4 for letters?