$h[n] \Leftrightarrow H(e^{j\omega})$

Frequency

Gain - dB

0 0.5

-45

0

Re

Im

z-plane

© 1999–2017 Mark A. Wickert
Chapter 1

Course Introduction/Overview

Contents

1.1 Introduction to Modern Digital Signal Processing . . 1-3
1.2 Contemporary DSP 1-4
 1.2.1 The Technology 1-4
 1.2.2 Key Applications Areas 1-5
1.3 Course Perspective in Comm/DSP Area ECE 1-7
1.4 What is this course about? 1-8
1.5 Software Analysis/Simulation Tools 1-9
1.6 The Computer Projects 1-10
1.7 Course Syllabus 1-11
1.8 Instructor Policies 1-12
1.1 Introduction to Modern Digital Signal Processing

- Contemporary DSP
 - Theory
 - Technology
 - Applications

- Course perspective
 - Expected background
 - Where to go from here

- What is this course about?

- The role of computer analysis/simulation tools in and outside this course

- The computer simulation project

- Instructor policies
1.2 Contemporary DSP

- The theoretical foundation for Modern signal processing got it’s start back in the late 1960s and early 1970s

- Two key texts which started this era are *Digital Signal Processing* by Oppenheim and Schafer and *Theory and Application of Digital Signal Processing* by Rabiner and Gold, both published in 1975

- A good source of recent theoretical developments is the *IEEE Journal on Signal Processing* (formerly Acoustics Speech and Signal Processing) and the annual *Proceedings of the International Conference on Acoustics Speech and Signal Processing* (ICASSP)

- Other applied digital signal processing conferences exist and are usually associated with trade shows

1.2.1 The Technology

- DSP chips/architectures
 - Integer/Fixed point implementations
 - Floating point implementations
 - FPGA based implementations

- DSP software and tools
1.2.2 Key Applications Areas

- Computers/Internet
 - Broadband access
 - Voice over IP
 - MP3 and related high quality audio formats
 - Multimedia in general: data, voice, music, & video

- Wireless Communications
 - Mobile communications (over 200 million phones/yr over the world)
 - High-speed modems and xDSL
 - Real-time data compression for voice and video
 - Wireless and telecommunication infrastructure

- Industrial
 - Real-time processing of industrial and medical signals
 - PC with DSP for virtual instruments for test and analysis

- Digital Control Systems
 - DSP vs microprocessors and microcontrollers

- Audio
 - MP3 players
 - Home audio and theatre systems
 - Noise cancelling, e.g., quieting a car interior using adaptive noise cancellation or headphones
• Video Imaging
 – HDTV
 – Special purpose image processing in instrumentation and medical

• Biomedical
 – Many possibilities
 – Hearing aids
 – Diagnostic imaging

• Military/Aerospace
 – An active DSP area for over 40 years
 – Many consumer DSP applications had their start here
 – Sophisticated surveillance systems and smart weapons
 – Specialty technologies include:
 * Frequency domain processing
 * Parallel processing
 * Radar signal processing
 * Software defined radio (SDR)
1.3 Course Perspective in Comm/DSP Area ECE

Undergraduate Engineering Curriculum

Senior/1st Year Graduate Signals & Systems Courses

Other Graduate Signals & Systems Courses Offered on Demand/Indep. Study

Signals & Systems Lab
Comm Lab
Satellite Comm
Identical
Comm Sys II (even)
Inform/Coding

Comm Sys I (odd)
Statistical Signal Process

Real-Time DSP
Random Signals

Spectral Estimation

ECE 5650/4650 Modern DSP
1.4 What is this course about?

- This course has as its focus the \textit{nuts and bolts} of one-dimensional discrete-time signals and systems analysis
 - Developing analytical skills is of primary importance
 - Introducing specialized applications is secondary

- Most all of the theoretical developments will parallel those of a traditional continuous-time signals and systems course
 - Here at UCCS, we now introduce discrete-time signal and systems in ECE 2610 (Intro to Sig & Sys), and more DSP topics are covered in ECE 3205 (Ckts & Sys II)
 - This course pushes the math well beyond the introduction in those courses

- Unique aspects of discrete-time signals and systems include:
 - Analog-to-digital and digital-to-analog interfaces
 - Multi-rate processing systems, i.e., more than one sampling rate in the signal input/output path
 - Software reconfigurability of systems

- Discrete random signals will be introduced
 - This will allow analysis of quantization affects
 - Key to follow-on courses involving statistical signal processing
 - Building simulation models that include \textit{noise}
1.5 Software Analysis/Simulation Tools

- The experimental investigation of discrete-time signals and systems does not require a lab full of test equipment
- What is available from the academic perspective:
 - Basic mathematical analysis tools include
 * Python (Scipy stack), MATLAB, & Mathematica
 - DSP specific tools include
 * Python using the `scipy.signal` package and `ssd.py`
 * MATLAB using the signal processing toolbox
 - Starting from scratch
 * The C/C++ programming language
 - Real-time DSP Development
 * For ARM Cortex M4 – Keil
 * Verilog/VHDL hardware description languages
 * For DSP TI devices Code Composer Studio
 * For Analog Devices DSPs – Visual DSP
 * Other tools that have code generation capability
- Inexpensive hardware evaluation is also a reality, e.g.,
 - ARM Cortex M4 and M7 with CMSIS DSP library, e.g., Cypress Pioneer Kit $50 (ECE 4680 & ECE 4655/5655)
 - TI LCDK at $195 using the OMAP L138
 - Others from Analog Devices and Motorola
1.6 The Computer Projects

- Computer based exercises using Python will be assigned during the semester (Jupyter Notebook & Python 2.7)

 - These projects first familiarize you with Python, then work through the many details of DSP in the time and frequency domains

 - Python examples are also embedded in the notes and will be used for in-class examples and demos

- A larger computer simulation project, will be assigned during the second-half of the semester, in place of additional computer based exercises

 - Past simulation projects have focused on software defined radio concepts, e.g., IF sampling, adaptive filters, or a DSP based modem

- In the Spring Semester ECE 5655, Real-Time DSP is offered as a complement to Modern DSP

 - In this course we currently use the ARM Cortex M4 via the Cypress Pioneer Kit and the Keil MDK IDE

- Another follow-on path is ECE 5615, Statistical Signal Processing, which builds upon the theory side of DSP and introduces random signals

 - Beyond ECE 5650, an undergraduate background in probability and random variables is required
1.7 Course Syllabus

ECE 5650/4650
Modern Digital Signal Processing
Fall Semester 2017

Instructor: Dr. Mark Wickert
Office: EB-292
Phone: 255-3500
Fax: 255-3589
http://www.eas.uccs.edu/~mwickert/ece5650/

Office Hrs: Wed. 10:40–11:15 am & Mon/Wed 1:30–2:15 pm, others by appointment.

Notes: Course lecture notes will be posted on the course Web Site as password required PDF files. Students are encouraged to download and print them.

Optional Software: Open source Python 3.6 using the Jupyter Notebook (Lab available soon). I suggest Anaconda then install the package scikit-dsp-comm using pip or conda see SP-Comm-Tutorial-using-scikit-dsp-comm. For typeset notebook output use add Pandoc, and MikTeX will are also available in the PC lab.

Grading: 1.) Graded homework assignments, including use of Python with the scipy-stack + Python project 1, assignments 25%
2.) Final Python computer project worth 20%/15%. Grade option with final.
3.) Two “Hour” exams at 15% each, 30% total.
4.) Final exam worth 25%/30%.

<table>
<thead>
<tr>
<th>Topics</th>
<th>Text Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction and course overview</td>
<td>1</td>
</tr>
<tr>
<td>2. Discrete-time signals and systems</td>
<td>2.0–2.9</td>
</tr>
<tr>
<td>3. The z-transform</td>
<td>3.0–3.4</td>
</tr>
</tbody>
</table>
| 4. Sampling of continuous-time signals and discrete-time random signals | 4.0–4.6
2.10, App. A
4.7–4.9 |
| 5. Transform analysis of linear time-invariant systems | 5.0–5.7 |
| 6. Structures for discrete-time systems and finite precision issues | 6.0–6.9 |
| 7. The discrete Fourier transform | 8.0–8.7, 8.9? |
| 8. Computation of the discrete Fourier transform | 9.0–9.6 |
| 9. Applications of the DFT | Portions of 10.0–10.6 |
The expected learning outcomes of this course are a more in-depth treatment of discrete-time signals and systems as first started in the UCCS course ECE2610 or similar from another university. As a discipline within electrical engineering this known as digital signal processing (DSP). Specifically the student will learn how to model discrete-time signals and systems in the time domain; extend the time domain modeling to the frequency domain using the discrete-time Fourier transform (DTFT); working signals and linear time invariant (LTI) systems using z-transform (ZT) techniques; sampling theory and multirate sampling theory as found in modern DSP; discrete-time random processes and modeling quantization/fixed-point arithmetic; DSP problem solving using time, frequency, and z-domains effectively; properties of LTI systems having minimum phase and linear phase; choice of various DSP implementation topologies; the value and power of the discrete Fourier transform (DFT) and its efficient implemention via fast Fourier transform (FFT) algorithms; Simulation of DSP algorithms and subsystems using Python with the Scipy stack.

1.8 Instructor Policies

- Homework papers are due at the start of class

- If business travel or similar activities prevent you from attending class and turning in your homework, please inform me beforehand

- Grading is done on a straight 90, 80, 70, ... scale with curving below these thresholds if needed

- Screencasts of the lectures will be made available as soon as possible after each lecture; this may be of help to those of you that travel and to others for review purposes

- Homework solutions will be posted on the course Web site as PDF documents with password protection

- Old exams will be posted on the Web site prior to the hour exams